[H

IL19341 - 8-bit MCU mode

4/26/2016

Scope: This document shows the read and write commands
working on hardware. This includes getting the write command to
work, which is a multi-parameter write,

Setup: Use DT022BTFT (or other Displaytech TFT with I1L19341)
which has the ILI9341. Configure the IM pins for 8-bit MCU
mode. Your setup might use a different micro-controller.

Conclusion: We could get the multi-parameter write commands to
work with 8-bit MCU mode using the exact configuration as
Snap-on. Please see scope traces and print statements below for
additional details.

Suggestion: Verify that the commands are similar to the scope traces below. In addition,
verify that the data is correct on all datalines (not just a few).

Part 1: Read “READ_STATUS (0x09) &
READ MADCTL (0x0B)”

Yellow - CS
Turquoise - D/CX (RS)
Pink - RDX

Blue - WRX

This following code snippet which reads the status register then reads from the madctl register
is captured in Figure 1.

DisplayEnablel(); // enable CS

uintl6 t dat, p2, p3, p4, p5;
WriteCommand (READ STATUS) ; // 0%
dat = ReadDatal() ;

p2 = ReadData (
p3 = ReadData (
r4 ReadData (
p5 ReadData (

’

)
)i
)
)

’

’

PRINT ("dummy = 0x%04X\n", dat);
PRINT ("p2 0x%04X\n", p2)
PRINT ("p3 = 0x%04X\n", p3)
PRINT ("p4 = 0x%04X\n", p4);
PRINT ("p5 = 0x%04X\n", p5);

WriteCommand (READ MADCTL); // OBh
dat = ReadDatal();
p2 = ReadData();
r3 ReadData() ;

PRINT ("dummy = 0x%04X\n", dat);
PRINT ("p2 = 0x%04X\n", p2);
PRINT ("p3 = 0x%04X\n", p3);

DisplayDisablel(); // enable CS

STOP W 8000ns ;0L e es— D 250000000is T £ @ 15

= L 9D W v B o R e T L

Figure 1

Part 2: Write “"MEMORY_ACCESS_CTRL (0x36)”

The following code snippet which writes to the mactl register is captured in Figure 2. Note: the
CS happened to be asserted 9us prior to the D/CX line was set low.

DisplayEnablel () ; // enable CS
//Memory access
WriteCommand (MEMORY ACCESS CTRL) ; // 36h

WriteData (0x00E8) ;

DisplayDisablel () ; // enable CS

STOP W 8000ms "0 e ee—— D 159000000 T £ @ 164V

8 T BRI R E e

Figure 2

Console output:

Part 1:
// read default values from 0x09 and 0x0B
dummy = 0x0009

p2 = 0x0000

p3 = 0x0000

p4 = 0x0061

p5 = 0x0000
dummy = 0x000B
p2 = 0x0000

p3 = 0x0000
Part 2:

/] write to 0x36 occurred here

Verify 1 & 2 Worked

Verify the that 0x36 command parameter was set correctly.

Notice that Part 1 value is p3 = 0x0000. Then Part 2 changed value. Then a read again shows
that the value changed to p3 = Ox00ES8.

/I read new value in 0x0B
dummy = 0x000B

p2 = 0x0000

p3 = 0x00E8

Appendix: Initialization Code

Ensure your reset sequence is correct. Here is our code:

DisplayResetEnable(); // enable reset
DelayMs (10) ;
DisplayResetDisable(); // disable reset

DelayMs (120) ;

//Software Reset

WriteCommand (SOFTWARE RESET) ;

//Supposed to wait at least 120ms, wait 250 to be safe
DelayMs (250) ;

WriteCommand (DISPLAY OFF); // display off

